Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In a physical system with conformal symmetry, observables depend on cross-ratios, measures of distance invariant under global conformal transformations (conformal geometry for short). We identify a quantum information-theoretic mechanism by which the conformal geometry emerges at the gapless edge of a 2+1D quantum many-body system with a bulk energy gap. We introduce a novel pair of information-theoretic quantities(\mathfrak{c}_{\textrm{tot}}, \eta) that can be defined locally on the edge from the wavefunction of the many-body system, without prior knowledge of any distance measure. We posit that, for a topological groundstate, the quantity\mathfrak{c}_{\textrm{tot}} is stationary under arbitrary variations of the quantum state, and study the logical consequences. We show that stationarity, modulo an entanglement-based assumption about the bulk, implies (i)\mathfrak{c}_{\textrm{tot}} is a non-negative constant that can be interpreted as the total central charge of the edge theory. (ii)\eta is a cross-ratio, obeying the full set of mathematical consistency rules, which further indicates the existence of a distance measure of the edge with global conformal invariance. Thus, the conformal geometry emerges from a simple assumption on groundstate entanglement. We show that stationarity of\mathfrak{c}_{\textrm{tot}} is equivalent to a vector fixed-point equation involving\eta , making our assumption locally checkable. We also derive similar results for 1+1D systems under a suitable set of assumptions.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Despite fundamental interests in learning quantum circuits, the existence of a computationally efficient algorithm for learning shallow quantum circuits remains an open question. Because shallow quantum circuits can generate distributions that are classically hard to sample from, existing learning algorithms do not apply. In this work, we present a polynomial-time classical algorithm for learning the description of any unknown š-qubit shallow quantum circuit š (with arbitrary unknown architecture) within a small diamond distance using single-qubit measurement data on the output states of š. We also provide a polynomial-time classical algorithm for learning the description of any unknown š-qubit state |šā© = š|0^šā© prepared by a shallow quantum circuit š (on a 2D lattice) within a small trace distance using single-qubit measurements on copies of |šā©. Our approach uses a quantum circuit representation based on local inversions and a technique to combine these inversions. This circuit representation yields an optimization landscape that can be efficiently navigated and enables efficient learning of quantum circuits that are classically hard to simulate.more » « less
An official website of the United States government
